머신러닝 (11) 썸네일형 리스트형 [Paper Review] 사용자별 가중치 표준 편차를 활용한 Federated Learning 성능 향상 기법 . 안녕하세요. 에이치비킴 입니다. 이번 포스팅에서는 연합학습과 관련된 논문을 함께 살펴 보겠습니다. 논문을 살펴보기 전에, 연합학습의 개념이 정리된 글을 참고하시면 좋을 것 같아 링크 남깁니다. 연합학습이란? 연합학습(Federated Learning) 이란? . 안녕하세요, 에이치비킴 입니다. 연합학습에 대해서 본격적으로 살펴보기 전에, 연합학습이 최근 각광받고 있는 이유가 무엇인지 알아보아야겠죠. 연합학습은, 기존의 머신러닝 기법들과는 hyungbinklm.tistory.com 함께 살펴 볼 논문은, 올해 여름 제주도에서 개최한 2021년도 한국통신학회 하계종합학술발표회에서 공개한 논문입니다. 논문 제목은 '사용자별 가중치 표준 편차를 활용한 Federated Learning 성능 향상 기법' 입니.. [Paper Review] MEC (Mobile Edge Computing) 환경에서 연합학습의 활용 . 안녕하세요, 에이치비킴 입니다. 최근 몇 년간, 모바일 디바이스의 성능과 딥러닝 분야에서 큰 발전이 이루어지고 있죠. 이 덕분에 의학 및 차량 간 네트워크 등의 분야에서 수 많은 활용 가능성을 갖게 되었습니다. 이와 함께, 데이터를 중앙 서버에 모아 학습을 시키는 기존의 학습 방법에서 프라이버시 문제가 제기되었습니다. 이를 극복하기 위해서 연합학습 (Federated Learning) 이라는 학습 방법이 등장하였고, 이와 관련하여 이전 포스팅에서 정리해두었으니 참고하시면 좋을 것 같습니다. 이전 포스팅 바로가기 연합학습(Federated Learning) 이란? . 안녕하세요, 에이치비킴 입니다. 연합학습에 대해서 본격적으로 살펴보기 전에, 연합학습이 최근 각광받고 있는 이유가 무엇인지 알아보아야겠죠.. 연합학습(Federated Learning) 이란? . 안녕하세요, 에이치비킴 입니다. 연합학습에 대해서 본격적으로 살펴보기 전에, 연합학습이 최근 각광받고 있는 이유가 무엇인지 알아보아야겠죠. 연합학습은, 기존의 머신러닝 기법들과는 달리 '데이터의 익명성이 보장된다.' 라는 강점을 갖고 있습니다. 기존의 머신러닝에서는 모바일 디바이스 또는 센서 등의 장치에서 얻은 정보를 하나의 중앙 서버로 취합하여 학습이 진행됩니다. 하지만 연합학습에서는 각각의 장치가 갖고 있는 데이터를 중앙 서버로 보내지 않고, 각각의 장치에서 학습이 진행됩니다. 학습을 통해 도출된 '가중치들만' 중앙 서버로 전송이 되어, 중앙 서버는 이 가중치들을 하나의 가중치로 취합하는 최종 역할을 담당합니다. 중앙서버로 '가중치들만' 중앙 서버로 전송이 됨으로써, 각각의 장치가 갖고 있는 로컬.. 이전 1 2 다음