본문 바로가기

Federated Learning

(3)
[Paper Review] Personalized Federated Learning with Clustering: Non-IID Heart Rate Variability Data Application . 안녕하세요. 에이치비킴 입니다. 이번 논문 리뷰는 논문이 작성된 포맷에 맞춰 순서대로 살펴 볼 예정입니다. 논문명: Personalized Federated Learning with Clustering: Non-IID Heart Rate Variability Data Applicaiton (Joo Hun Yoo et al.) 0. ABSTRACT @ 머신러닝 기법은 큰 데이터셋 내부에서 연관성을 찾는데 유용하게 쓰인다. @ 하지만 데이터를 수집하고 활용하는 과정에서 privacy 문제가 제기될 수 있다. 의료 데이터와 같이 공개하기에 민감한 데이터는 특히 그렇다. @ 이러한 측면에서, 연합학습 기법이 privacy 보호 측면에서 장점을 갖는다. @ 위 privacy에 포함될 수 있는 분야는 다음과 같..
[Paper Review] MEC (Mobile Edge Computing) 환경에서 연합학습의 활용 . 안녕하세요, 에이치비킴 입니다. 최근 몇 년간, 모바일 디바이스의 성능과 딥러닝 분야에서 큰 발전이 이루어지고 있죠. 이 덕분에 의학 및 차량 간 네트워크 등의 분야에서 수 많은 활용 가능성을 갖게 되었습니다. 이와 함께, 데이터를 중앙 서버에 모아 학습을 시키는 기존의 학습 방법에서 프라이버시 문제가 제기되었습니다. 이를 극복하기 위해서 연합학습 (Federated Learning) 이라는 학습 방법이 등장하였고, 이와 관련하여 이전 포스팅에서 정리해두었으니 참고하시면 좋을 것 같습니다. 이전 포스팅 바로가기 연합학습(Federated Learning) 이란? . 안녕하세요, 에이치비킴 입니다. 연합학습에 대해서 본격적으로 살펴보기 전에, 연합학습이 최근 각광받고 있는 이유가 무엇인지 알아보아야겠죠..
연합학습(Federated Learning) 이란? . 안녕하세요, 에이치비킴 입니다. 연합학습에 대해서 본격적으로 살펴보기 전에, 연합학습이 최근 각광받고 있는 이유가 무엇인지 알아보아야겠죠. 연합학습은, 기존의 머신러닝 기법들과는 달리 '데이터의 익명성이 보장된다.' 라는 강점을 갖고 있습니다. 기존의 머신러닝에서는 모바일 디바이스 또는 센서 등의 장치에서 얻은 정보를 하나의 중앙 서버로 취합하여 학습이 진행됩니다. 하지만 연합학습에서는 각각의 장치가 갖고 있는 데이터를 중앙 서버로 보내지 않고, 각각의 장치에서 학습이 진행됩니다. 학습을 통해 도출된 '가중치들만' 중앙 서버로 전송이 되어, 중앙 서버는 이 가중치들을 하나의 가중치로 취합하는 최종 역할을 담당합니다. 중앙서버로 '가중치들만' 중앙 서버로 전송이 됨으로써, 각각의 장치가 갖고 있는 로컬..